CULEGERE DE LUCRARI STHNTIFICE

TEHNOLOGII MODERNE, CALITATE,
RESTRUCTURARE
Chisindu, mai 2007
S P VS LS Ot 0 P 1 T I A0 TR 08+ v oo 8 720 A R Sy amr v raaan

DEVELOPMENT OF RECONFIGURABLE SOFTWARE
MODULE FOR CNC MACHINE TOOLS

FLORIN BOGDAN MARIN, IONUT CLEMENTIN CONSTANTIN,
VASILE MARINESCU, CIPRIAN CUZMIN, ALEXANDRU EPUREANU

Key words: reconfigurable machine tools, open-architecture, interpreter, condition
instructions set

Abstract - After reconfiguration the new hardware architecture implies also software
architecture changing. Reconfigurable machine tools performance is determined most
by ramp-up-time. A important part of this is the time needed for software
reconfiguration. This paper presents a reconfigurable interpreter, developed as new
software approach, which provide a fast software reconfiguration to be operated by
the machine user itself. The interpreter design methodology and corresponding
software presented in the paper was developed at the "Dunarea de Jos" University —
Galati. Results achieved confirmed the efficiency of this approach.
- 1. Introduction
Market demands for products tend to change rapidly. To respond to such
changing mix and volumes, manufacturers must modify the structure of their machine
ftools, ‘to be able to -change their production schedule. There are different
[manufacturing systems: dedicated, flexible and reconfigurable.
A Reconfigurable Machine Tool (RMT) is a concept that describes
pacity of a machine to modify its structure, in order to allow a fast change of both

lardware and software-parts according tonew demands of the market [1][2].
In this paper we propose a reconfigurable interpreter for CNC machine

ols allowing implementation of RMT hardware taking into account Open
Architecture concept [3], which we consider to be a must have condition in designing
oftware for RMT.

v The goals of this report are: a) to define the concept of reconfigurable interpreter;
b) to define a methodology for designing a reconfigurable interpreter; c)

plying

265

;H. ARCHITECTURE OF RECONFIGURABLE INTERPRETER ¢

In order to. achieve the goal of development of an interpreter. we can
divide the problem into the following basic parts: a) choosing a language to be
interpreted; b), writing an _execution code for the language; ¢) providing a
debugger; d) providing a GUI interface. ’

Software module represented by interpreter was implemented on a
turning 1 machme in order to proof the concept of reconfigurable interpreter. The
lanouagc used in the. software _interface is well known machine tool
programmmg language ISO CNC Code. However, the mterpreter was designed
in order to ‘adapt to any new promammmg language as is shown below,. .

The information circuit in a CNC starting with the user and ending w1th the
effectors is described conceptually in figure 1.

i
1 1

Kinematics and i Controller

controller SO programming

reconfiguration | % i

I

reconfigurable interpreter—-— - . |
non wcanﬁguribo« interpreter
]

e

¥
Interpreter

reconfiguration] interpreter
programming

o

 RMT -
{ Configured

Figure I. Information circuit in CNC machine

When preceding to reconfigurate the machine, a new hardware
configuration is builded including new controllers and a different kinematics
configuration. As a consequence, the control component and software interface
are reqmred Whereas software mterface for basw command is. not .an_issue,
building the interpreter, as a matter of fact the main core of the command for
the user is a challenging task. Nowadays interpreters are desxgned to execute
implementation of a language, as long as machine tool produces. The RMT
paradigm requires designing reconfigurable software modules, including
interpreters. Furthermore is needed to be taken into account reconfigurability, as
new programming languages are proposed. We are here taking into account
high'level language implementation.

Each kinematics configuration of machme tools detexmmes new
parameters as. machine travel limits, feed rate, spindle feed, etc. Moreover,
some of the programming functions may not be available in the new

266

onfiguration.

Of a paramount interest are the conditional relations between function,
_some functions are deactivating others, and these conditions depends on
ematics configuration. , : ;

: To complete the task of reconfiguration of a RMT, three steps are to be
lowed: a) kinematics reconfiguration; b) controller reconfiguration; c)
erpreter reconfiguration. In comparison with nowadays interpreters, the new
onfigurable interpreter lead to reducing the ramp-up-time. Concerning the
econfigurability of an interpreter we make the following assumptions and
statements. Firstly, we define a reconfigurable interpreter as one with the some
ther programming language to be used in all further configurations. During
he configuration process, some functions or instructions are disabled; the
eaning is modified according to the new machine. Also, an reconfigurable
rpreter is allowing implementing others languages including a new
guage that is suppose to emerge, besides the main characteristic, that of
wing changing general settings for the new configuration. Basically: all
nctions of a programming language may be added in the reconfiguration
€ss.

The time of implementation new configuration for interpreter is a
natter of hours, whereas that of reprogramming the interpreter according to
w hardware configuration is not satisfying the condition stated for RMT, that
hort ramp-up-time.

[II. ALGORITHM DESCRIPTION

The former approach works well for single pass interprets but is,
ierally, more limiting since with the new reconfigurable concept in mind, the
ging of configuration is an issue. An interpreting environment can be made
eractive, so that changes can be to speed up the development process by
roviding quicker feedback on changes to the grammar. As reconfigurable
erpreter involves new definitions of functions, the grammar is changing
ordingly.
As stated above, each kinematic configuration of machine tools has
\different characteristics as machine travel limits, feed rate, spindle feed, etc.

Aoreover, some of the functions may not be available in the new configuration.
The issues that are encountered in the grammar of the interpreter
omponent are: a) some of the functions may not be available in the new
onfiguration; b) functions defining machine travel limits, feed rate, spindle
d etc, are modified/voided; c) the working space is modified.
The code is examined alternatively by running on a conditions
struction set, a technique that allows great power in its ability to halt when
yécific conditions are encountered. These instruction set conditions are the key
this approaching of the debugger. Each issue concerning the relation between
nction are deal with conditions that are tested on code. As we use ISO CNC

267

code for programming turning machine, there are four of G functions: a) modal
G functions, functions belonging to a family of G functions that cancel one
another; b) - nonmodal G functions, functions enabled only in the block where
they are programmed (cancelled at the end of the block); ¢) G functions
incompatible with the state of the program, functions whose programming is
enabled or not according to the state of the current program; d) G functions
associated with arguments Functions followed by one or more arguments that
are specific to the G function announcing them. These possibilities of relation
between functions are treated by condition instruction sets algorithm.

The idea of these conditions allows changing the language
programming to be mterpreted The software allows fast and easy
reconfiguration and defining of functions.

To date we have used the turning machine system to define a wide
range of scenario from testing as diverse set of conditions may occur for
different configurations. We have successfully supported the execution of
interpreter processes and have begun to apply powerful algorithms to the
process definitions to prove critical properties of reconfigurability. This
experience suggests that our approach to process definition has very broad
applicability.

IV. APPLICATION DESCRIPTION

Besides the ‘interface for command and editor for interpreter, the
settings panels represent the component of software that allows defining
functions behavior. The interpreter has been designed for easy and fast
configurations of functions and arguments. The data exchange is based on a set
of ‘different information that allows change relations between functions
according to their properties at one moment in execution. “Negation Prop”
,7Arguments”, “Union” buttons adds the code field, where appropriate, to
existing function and adds a new behavior properties for each function. Also
the interface allows to define arguments for each function and defining range
values of arguments.

ACKNOWLEDGMENT
The authors gratefully acknowledge the financial support of the Romanian
Ministry of Education and Research through grants CEEX 22 and CEEX 23.

BIBLIOGRAPHY

[1] Koren, Y., Heisel, U., Jovane, F., Moriwaki, T.. Pritschow, G., Ulsoy, G. and
VanBrussel, H., (1999), Reconfigurable manufacturmg systems Annals of the CIRP,48,
1-14.

[2] Chrin, J. L. and McFarlane, D. C., (1999), 4 migration strategy for the
introduction of holonic production control, IFAC Multi- Agent—Systems in Production,
Vienna

[3]. Cho Y. S and. Carver D. L, (2004) 4 model for sofiware reuse, lournal of
Systems Integration, 6(3), pp. 181-201

268

	1.jpg
	2.jpg
	3.jpg
	4.jpg

