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The study of machine-tool dynamic is realized here as “monitoring”, meaning checking and improving the 
functioning of the machine. The state of processing is followed by certain sensors whose signs are processed 
inside the computer and then it takes the decision of monitoring, meaning the identification of a class from the 
set of classes (process conditions).  
In this part of the paper there are presented recordings spectral analysis and use of ANN on monitoring of the 
tool wear.  
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1. INTRODUCTION  

In the first part of this paper there are presented the classes (tool conditions) for monitoring in turning and the 
artificial neural networks – ANNs (the creation of an ANN with the function newff).  

In the second part of this paper there are presented the batch training of an artificial neural network with 
Levenberg-Marquardt algorithm and the experimental setup for components of cutting forces.  

In the third part there are presented the experimental setup (for: cutter holder accelerations, cutting 
temperature, surface roughness, power), cutting working conditions and the tool wear.  

In the fourth part there are presented the experimental results (validation of recordings) and the data processing 
(initial processing).  

In this part of the paper there are presented recordings spectral analysis and use of ANN on monitoring of the 
tool wear.  

2. RECORDINGS SPECTRAL ANALYSIS (DFT DISCRETE FOURIER TRANSFORM)  

For length N input vector x, the DFT is a length N vector X, with elements  
                                 N  
                   X(k) =  sum  x(n)*exp(-j*2*pi*(k-1)*(n-1) / N),   1 <= k <= N.  
                                n=1  

The relationship between the DFT and the Fourier coefficients “a” and “b” in  
                                     N/2  
                  x(n) = a0 + sum (a(k)*cos(2*pi*k*t(n) / (N*dt) + b(k)*sin(2*pi*k*t(n) / (N*dt)))  
                                     k=1  
                                       N  
is:      a0 = X(1) / N = (sum x(n)) / N,       a(k) = 2*real(X(k+1)) / N,        b(k) = -2*imag(X(k+1)) / N,  
                                     n=1  
where x is a length N discrete signal sampled at times t with spacing dt. Remark:  t(n) / dt = n.  

To test the programme for the Fourier series, we apply it to the function:  
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         x = 3 + 4*sin(2*pi*50*t) + 2*sin(2*pi*100*t) + 5*sin(2*pi*350*t); 
Figure 1 shows the result to be correct. 

Fig. 1 
This programme is further applied to recording no. 64 (belonging to class C6), for the spectral analysis 

of az and Fz. Figure 2 shows the graph. 

Fig. 2 
With recordings in class C6 (see fig. 1 in [5]) Fz shows a periodical variation, for a long period: T

100.D t = 100.1/9600, therefore with frequency  f = 1 / T = 96 Hz, also present in figure 2, this being the
fundamental frequency of the vibrations of the technological system.

The graphical representation Fz = Fz (t) of recording no. 64 shows that vibration amplitude is of nearly 
2.5 N, value which is sustainable in fig. 2. 
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3. USE OF ANN ON MONITORING OF THE TOOL WEAR 

3.1. IMPROVING GENERALIZATION 
One of the problems that occur during neural network training is called “over fitting”. The error on the 

training set is driven to a very small value, but when new data is presented to the network the error is large. 
The network has memorized the training examples, but it has not learned to generalize to new situations. 

One method for improving the network generalization is to use a network that is just large enough to 
provide an adequate fit. The larger a network you use, the more complex the functions the network can 
create. If we use a small enough network, it will not have enough power to over-fit the data. 

Unfortunately, it is difficult to know beforehand how large a network should be  
for a specific application. Other method for improving generalization is early stopping.

Note that if the number of parameters in the network is much smaller than the total number of points in 
the training set, then there is little or no chance of over-fitting. If you can easily collect more data and 
increase the size of the training set, then there is no need to worry about the following techniques to prevent 
over fitting. The rest of this section only applies to those situations in which you want to make the most of a 
limited supply of data. 
EARLY STOPPING 
Another method for improving generalization is called early stopping. In this technique, the available data is 
divided into three subsets. The first subset is the training set, which is used for computing the gradient and 
updating the network weights and biases. The second subset is the validation set. The error on the validation 
set is monitored during the training process. The validation error will normally decrease during the initial 
phase of training, as does the training set error. However, when the network begins to over fit the data, the 
error on the validation set will typically begin to rise. When the validation error increases for a specified 
number of iterations, the training is stopped, and the weights and biases at the minimum of the validation 
error are returned. 

The test set (the third subset) error is not used during the training, but it is used to compare different 
models. It is also useful to plot the test set error during the training process. If the error in the test set reaches 
a minimum at a significantly different iteration number than the validation set error, this may indicate a poor 
division of the data set. 

It is a good idea to train the network starting from several different initial conditions. It is possible for 
either method to fail in certain circumstances. By testing several different initial conditions, you can verify 
robust network performance. 

3.2. PREPROCESSING AND POST PROCESSING 
Neural network training can be made more efficient if certain pre-processing steps are performed on 

the network inputs and targets. 
AVERAGE AND STAND. DEV. (prestd, poststd, trastd) 

Before training, it is often useful to scale the inputs and targets so that they always fall within a 
specified range. 

An approach for scaling network inputs and targets is to normalize the average and standard deviation 
of the training set. This procedure is implemented in the function prestd. It normalizes the inputs and targets 
so that they will have zero average and unity standard deviation. The following code illustrates the use of 
prestd:             [pn,averagep,stdp,tn,averaget,stdt] = prestd(p,t); 

The original network inputs and targets are given in the matrices “p” and “t”. The normalized inputs 
and targets, “pn” and “tn”, that are returned will have zero averages and unity standard deviation. The 
vectors “averagep” and “stdp” contain the average and standard deviations of the original inputs, and the 
vectors “averaget” and “stdt” contain the averages and standard deviations of the original targets. After the 
network has been trained, these vectors should be used to transform any future inputs that are applied to the 
network. They effectively become a part of the network, just like the network weights and biases. 

If prestd is used to scale both the inputs and targets, then the output of the network is trained to 
produce outputs with zero average and unity standard deviation. If you want to convert these outputs back 
into the same units that were used for the original targets, then you should use the routine “poststd”. In the 
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following code, we simulate the network that was trained in the previous code, and then convert the network 
output back into the original units. 
                an = sim(net,pn); 
                a = poststd(an,averaget,stdt); 

The network output “an” corresponds to the normalized targets “tn”. The un-normalized network 
output “a” is in the same units as the original targets “t”. 

If prestd is used to pre-process the training set data, then whenever the trained  
network is used with new inputs, they should be pre-processed with the averages and standard deviations that 
were computed for the training set. This can be accomplished with the routine trastd.
PRINCIPAL COMPONENT ANALYSIS (prepca, trapca) 

In some situations, the dimension of the input vector is large, but the components of the vectors are 
highly correlated (redundant). It is useful in this situation to reduce the dimension of the input vectors. An 
effective procedure for performing this operation is principal component analysis. This technique has three 
effects: it orthogonalizes the components of the input vectors (so that they are uncorrelated with each other); 
it orders the resulting orthogonal components (principal components) so that those with the largest variation 
come first; and it eliminates those components that contribute the least to the variation in the data set. The 
following code illustrates the use of “prepca”, which performs a principal component analysis. 
                    [pn,averagep,stdp] = prestd(p); 
                    [ptrans,transMat] = prepca(pn,0.02); 

Note that we first normalize the input vectors, using “prestd”, so that they have  
zero average and unity variance. This is a standard procedure when using principal components. In this 
example, the second argument passed to “prepca” is 0.02. This averages that “prepca” eliminates those 
principal components that contribute less than 2% to the total variation in the data set. The matrix “ptrans” 
contains the transformed input vectors. The matrix “transMat” contains the principal component 
transformation matrix. After the network has been trained, this matrix should be used to transform any future 
inputs that are applied to the network. It effectively becomes a part of the network, just like the network 
weights and biases. If you multiply the normalized input vectors “pn” by the transformation matrix 
“transMat”, you obtain the transformed input vectors “ptrans”. 

If “prepca” is used to pre-process the training set data, then whenever the trained network is used with 
new inputs, they should be pre-processed with the transformation matrix that was computed for the training 
set. This can be accomplished with the routine “trapca”. 
3.2- A N N 

The techniques described in chapters 3.1 and 3.2 will be applied in the following. 
The training set will contain the recordings in the “Learning” set, therefore 60% of the total number of 

recordings. Recordings “b” in the “Classification” set will be allotted to the validation set, and recordings 
“d” will be input into the testing set; therefore each set has 20 % of the recordings. 

ANN consists of 3 levels, s1 = 23 neurons, s2 = 27, s3 = 7 (= number of classes). The input matrix p
has the dimensions 12 (monitoring indices) x 655 (recordings), and the output matrix y has dimensions 7
(classes) x 655. The training functions are: tf1 = purelin, tf2 = tansig, tf3 = logsig, therefore the output 
vectors have 7 elements, with values in domain (0, 1). 

In the sequence with instructions:
              [ma, ia]=max(a); [mt, it]=max(t); c = ia = = it; n = 1: 655; nc = [n, c]; 
mt = 1 (obviously), and “ma” is the maximum value of the “a” column; if indices “ia” and “it” (which give 
the position of the respective maximum values) are identical, then the maximum values on the ”a” columns 
coincide with the maximum values on the ”t” columns and within matrix c (1x655) the respective elements 
equals 1, and in an opposite case it will take the value 0. “nc” is a matrix with two rows, the first one  
counts the recordings, while the second has the elements 1 (correct), or 0 (error). 

The first runs (with the training functions trainrp, trainscg, etc.) showed errors only in the positions 
corresponding to the recordings in classes c5 and c7, i. e. in the case of those classes which have the fewest 
recordings. The increase of the number of recordings – without making new experiments – may be 
performed by adding the same recordings several times to the same class, which may be eventually affected 
by a noise of an average value of 0.1; for example, if the recordings are included in the table “Table 112”, 
featuring 960 x 6, then the recordings: 
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        Table 112 + randn(960,6)*0.1  will be added. 
Consequently: 

- we fourfold the recordings in class c5: an average value noise of 0.1 is attached to the first set, the second 
set is identical with the original one, an average value noise of 0.15 will be attached to the third set; 
- we threefold the recordings in class c7, acting by a way of analogy with the foregoing (only with first and 
the second set). 

To sum up, the classes in chapter 4b have their final form as follows: 
- recordings 43  63, 77  87, i. e. 32 Rec. (with 4800 samples each) fit into class “c1” (VBmax  0,2 mm); 
- recordings 89  91, 94, 96  112  21 Rec.  class “c2” (0,2 < VBmax  0,4 mm);
- 113  118, 124  130, 132  144, 146  163  44 Rec.  “c3” (0,4 < VBmax  0,6 mm); 
- 164  171, 174  177  12 Rec.  “c4” (0,6 < VBmax  0,7 mm); 
- 182  184  3 Rec. + 3 Rec. (with noise) + 3 Rec. + 3 Rec. (with noise) = 12 Rec.  “c5” (VBmax > 0,7 
mm);
- 64, 67, 72  76, 93, 95, 131, 172, 179, 180, 185  14 Rec.  “c6” (Chatters); 
- 187  191  5 Rec. + 5 Rec. (with noise) + 5 Rec.  15 Rec.  “c7” (Idle turning). 

Therefore, c5 will consist of 60 recordings, c7 – 75 recordings, and the number of columns in the 
above matrices grows from 655 to 750.

With instructions:     ind = find(c = = 0); dim = length(ind); er = dim / 750, 
we find: the “c” elements indices which are null, the “ind” number of elements as well as the network error, 
respectively. 

The results of a run are presented in what follows:     R =  8   ;   Q = 750 
There was a redundancy in the data set, since the principal component analysis has reduced the size of 

the input vectors from 12 to 8.
TRAINRP, Epoch 0/300, MSE 1.53359/0, Gradient 0.292509/1e-006 
TRAINRP, Epoch 25/300, MSE 0.487294/0, Gradient 0.0150939/1e-006 
TRAINRP, Epoch 43/300, MSE 0.477332/0, Gradient 0.0148044/1e-006 
TRAINRP, Validation stop. 
ind = 
  Columns 1 through 18  
   440   441   445   446   447   448   449   450   454   455   456   457   458   459   463   468   472   473 
  Columns 19 through 37  
   474   475   476   477   481   482   483   519   520   521   533   545   594   595   596   646   647   658   672 
dim = 37    ;    er = dim / 750 = 0.0493 =  4.93 %. 

It is a useful diagnostic tool to plot the training, validation and test errors to check the progress of 
training. The result is shown in the figure 3. 

The result here is reasonable, since the test set error and the validation set error have similar 
characteristics. 

In other runs: 
- carried out under the same circumstances, results were twice as above, and once as follows: 51epochs; 
dim = 27 ;  er = 3.6 %; 
- without “init” function (to reinitialize weights and biases), in two runs the errors were 4.67% and 13.3%; 
- with the trainscg training function without “init” the error was 5.33%, whereas with “init”- 25.6%. 
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Fig. 3 
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